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The encoding of various aroma impressions and the distinction between different aroma qualities
are unsolved problems, as differences between aroma impressions can be described only in a
qualitative but not in a quantitative manner. As a consequence, classifications of various aroma
qualities cannot easily be performed by standard QSAR methods. To find a proper way to encode
aroma impressions for SAR studies, a total of 50 pyrazine-based aroma compounds showing the
aroma quality of earthy, green-earthy, or green are analyzed. Special attention is thereby turned on
the mixed aroma impression green-earthy. Classifications on the whole data set as well as on smaller
subsets are calculated using self-organizing molecular field analysis (SOMFA) and artificial neural
networks (ANNs). SOMFA classifies between two or three aroma impressions, leading to models
satisfying in predictive power. ANN analysis using multilayer perceptron network architecture with
one hidden layer and nominal output as well as genetic regression neural network) with two hidden
layers and numerical output both lead to a rather good performance rate of 94%.
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INTRODUCTION

Aroma compounds play an important role in food chemistry.
At the beginning mostly the syntheses of flavor molecules were
of interest; later, the main topics of aroma research were the
isolation of aroma compounds from foodstuffs and their
analytical chemistry as determined by using improved analytical
techniques. Nowadays, the flavor science concentrates especially
on a better definition of the sensory properties of aroma
substances and on the knowledge of the relationships between
the molecular structures and the quality as well as the intensity
of the aroma impression of these molecules (1). Quantitative
structure-activity relationships (QSAR) try to correlate the
intensity of a biological effect with the molecular structure of
the studied compounds. During recent years, various QSAR
models have been developed for aroma compounds to give some
insight into the parameters, which might influence the aroma
intensity (2-8). Generally, QSAR methods rely on quantitative
information of the biological activity of the studied molecules.
The activity of aroma compounds can be determined quantita-
tively by the detection threshold value of the compound

dissolved in water. The threshold value is thereby defined as
the olfactory detection threshold, which is connected to the
ability of a test person to distinguish between water with and
without aroma. Studies on the aroma qualities and structural
differences between the various aroma impressions (9-11),
which are also important to elucidate the mechanism of aroma
recognition, cannot easily be performed by conventional QSAR
procedures. This is due to the fact that an aroma impression
can be described only in a qualitative but not in a quantitative
manner. Moreover, this qualitative specification is not always
clearly defined. A widespread problem appears to be the fact
that the assignment of some substances to a concrete aroma
impression is sometimes arbitrary, as for these compounds two
or more aroma descriptions are given. Dominant aroma impres-
sions with weaker tonalities have to be considered as well as
real mixtures of different aroma qualities. So the question arises,
how could these various aroma impressions and mixtures be
encoded in order to investigate them by computational methods
and to obtain proper classification models pointing out their
structural differences.

In our previous investigations on structure-flavor relation-
ships the application of artificial neural networks (ANNs) with
nominal output allowed the discrimination between different
classes of aroma impressions of pyrazine-derived flavor com-
pounds (8). Pyrazines are one important class of aroma
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compounds. They are potent and characteristic flavorants found
in a wide range of raw and processed foods, where they are
formed during the Maillard reaction (12) or as products of the
secondary metabolism (13,14), respectively. Their general
structure is depicted inFigure 1.

As an extension of our recent studies, we investigated a series
of aroma compounds with two different aroma impressions and
compounds that are described to show both of these aroma
qualities simultaneously. In particular, pyrazine-derived mol-
ecules with earthy, green, and green-earthy odors are analyzed.
The aroma impressions are taken from the literature (different
panels), whereby 10 compounds are described in the same way

by two different authors. Only compound15 is specified with
two different aroma qualities: as green-earthy smelling by
Boelens et al. (21) and as earthy by Wagner et al. (6). In this
case we decided to describe compound15 with a green-earthy
aroma on the basis of the fact that the earthy character is
included. In total, quality data of seven different panels are used
(seeTable 1). Whereas the group of earthy compounds is mainly
investigated by Wagner et al. (6) and the green-earthy group
by Masuda et al. (4), studies of the green-smelling compounds
are distributed among several authors. Results show that a
correct classification of the various aroma impressions by ANN
and self-organizing molecular field analysis (SOMFA) is not
related to the amount of panels used describing a particular
aroma quality.

Different encoding schemes for the aroma qualities are
considered in order to compare the predictivity of the clas-
sification models obtained by using SOMFA and ANNs.

Table 1. Structures and Aroma Impressions of the 50 Pyrazines

compd pyrazine R1 R2 R3 R4 impression

1 triethyl- C2H5 C2H5 C2H5 H earthya

2 2-methyl-3-ethenyl- CH3 CHdCH2 H H earthya

3 2,5-dimethyl-3-ethenyl- CH3 CHdCH2 CH3 H earthya

4 3,5-dimethyl-2-ethenyl- CH3 CHdCH2 H CH3 earthya

5 3,5-dimethyl-2-propyl- CH3 C3H7 H CH3 earthya

6 3,5-dimethyl-2-(Z-1-propenyl)- CH3 CHdCHCH3 (Z) H CH3 earthya

7 3,5-dimethyl-2-(E-1-propenyl)- CH3 CHdCHCH3 (E) H CH3 earthya

8 3,5-dimethyl-2-(2-propenyl)- CH3 CH2CHdCH2 H CH3 earthya

9 2-isopropyl-3,5-dimethyl- CH3 CH(CH3)2 H CH3 earthya

10 2-butyl-3,5-dimethyl- CH3 C4H9 H CH3 earthya

11 3-ethyl-5-methyl-2-ethenyl- CH3 H CHdCH2 C2H5 earthya

12 2-ethyl-5-methyl-3-ethenyl- CH3 H C2H5 CHdCH2 earthya

13 3-ethyl-2-methyl-5-ethenyl- CH3 C2H5 CHdCH2 H earthya

14 2-isopropyl-3-methyl- CH3 CH(CH3)2 H H earthyb

15 2,3-diethyl- C2H5 C2H5 H H green-earthyc

earthya

16 2-pentyl- H C5H11 H H green-earthyd

17 2-methylthio-3-methyl-5-(2-methylpentyl)- SCH3 CH3 CH2CH(CH3)C3H7 H green-earthyb

18 2-acetyl-3,6-dimethoxy-5-methyl- OCH3 COCH3 OCH3 CH3 green-earthye

19 2-methylthio-3-isopropyl- SCH3 CH(CH3)2 H H green-earthyb

20 2-butyl- H C4H9 H H green-earthyd

21 2-ethylthio-3-butyl- SC2H5 C4H9 H H green-earthyd

22 2-methylthio-3-pentyl- SCH3 C5H11 H H green-earthyd

23 2-methoxy-3-pentyl- OCH3 C5H11 H H green-earthyd

24 2-ethoxy-3-pentyl- OC2H5 C5H11 H H green-earthyd

25 2-methoxy-3-heptyl- OCH3 C7H15 H H green-earthyd

26 2-methylthio-3-octyl- SCH3 C8H17 H H green-earthyd

27 2-methoxy-3-octyl- OCH3 C8H17 H H green-earthyd

28 2-ethylthio-3-octyl- SC2H5 C8H17 H H green-earthyd

29 2-methylthio-3-decyl- SCH3 C10H21 H H green-earthyd

30 2- methoxy-3-decyl- OCH3 C10H21 H H green-earthyd

31 2-ethylthio-3-decyl- SC2H5 C10H21 H H green-earthyd

32 2-phenylthio-3-pentyl- SC6H5 C5H11 H H green-earthyd

33 2-phenoxy-3-pentyl- OC6H5 C5H11 H H green-earthyd

34 2-methoxy-5-isobutyl-3-methyl- OCH3 CH3 CH2CH(CH3)2 H greenb

35 2-methoxy-3-methyl-5-(2-methylbutyl)- OCH3 CH3 CH2CH(CH3)C2H5 H greenb

36 2-methylthio-3-methyl-5-(2-methylbutyl)- SCH3 CH3 CH2CH(CH3)2 H greenb

37 2,3-dimethyl-5-pentyl- CH3 CH3 C5H11 H greenf

38 2-phenoxy-5-isopropyl-3-methyl- OC6H5 CH3 CH(CH3)2 H greenb

39 2-ethylthio-3-methyl-5-(2-methylbutyl)- SC2H5 CH3 CH2CH(CH3)C2H5 H greenf

40 2-ethoxy-5-sec-butyl-3-methyl- OC2H5 CH3 CH(CH3)C2H5 H greenb

41 3-methoxy-2-isopropyl-5-methyl- OCH3 CH(CH3)2 H CH3 greene

42 2-dimethylamino-6-isobutyl- N(CH3)2 H H CH2CH(CH3)2 greene

43 2-acetyl-3-methoxy-5-methyl- OCH3 COCH3 H CH3 greene

44 2,5-dimethyl-3-(3-methylbutyl)- CH3 C3H5(CH3)2 CH3 H greenc

45 2-methoxy-3-isopropyl-5-methyl- OCH3 CH(CH3)2 CH3 H greene

46 2-propyl-3-methyl- CH3 C3H7 H H greenb

47 2-methylthio-3-propyl- SCH3 C3H7 H H greenb

48 2-ethylthio-3-pentyl- SC2H5 C5H11 H H greend

49 2-ethoxy-3-octyl- OC2H5 C8H17 H H greend

50 2-butoxy- OC4H9 H H H greeng

a Wagner et al. (6). b Masuda and Mihara (4). c Boelens and van Gemert (21). d Masuda and Mihara (22). e Takken et al. (3). f Shibamoto (23). g Pittet and Hruza (24).

Figure 1. General structure of pyrazines.
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The SOMFA method is a technique for 3D-QSAR studies; it
has been developed just recently by Robinson et al. (15). The
method has similarities to both comparative molecular field
analysis (CoMFA) and molecular similarity studies. Related to
CoMFA, a grid-based approach is used, but no probe interaction
energies have to be evaluated. As in similarity methods intrinsic
molecular properties, such as the molecular shape and electro-
static potential, are used to develop the QSAR models. Three-
dimensional grids are created as in other QSAR techniques with
values at the grid points representing shape or electrostatic
potentials. Crucial for SOMFA is the notion of the “mean
centered activity”, which is derived by subtracting the mean
activity of the training set from each molecule’s activity. The
value of the shape or the electrostatic potential at every grid
point for a given molecule is then multiplied by the mean
centered activity for this molecule. This weights the grid points
in such a way that the most active and least active molecules
have higher values and, therefore, have more influence on the
final model than the molecules with an activity close to the
mean value.

QSAR techniques such as SOMFA often do not lead to
satisfactory results, a fact that may be due to nonlinearities. One
possibility to overcome such problems is the application of
ANNs, which are able to handle nonlinear relationships suf-
ficiently. The importance of ANNs in the field of drug design
is strongly increasing (16), and these methods have already been
applied in different structure-activity relationship studies of
aroma compounds (9-11, 17-19). As ANNs are originally
motivated by attempts to describe the working principles of
individual neurons or networks of neurons in the human brain
mathematically (20), their texture can be seen in analogy to it.
In an ANN a processing element plays the role of a biological
neuron. It receives inputs from other processing elements
through the input connectors, which represent the dendrites. The
incoming data are interpreted in the processing element, and
the resulting output is sent to other processing elements through
the output connectors, simulating the function of the axons. The
pattern of connections between the neurons and the strength of
these connections, the so-called weights, play an important role
in the training of ANNs. This involves iterative changes of the
weights to minimize the error in the predictions on the training
set. If the network is properly trained, it learns to model the
function which relates the input variables to the output variables
and can subsequently be used to make predictions where the
output is unknown. Usually, the studied data set is divided into
training and verification sets. The training set is used to train
the network, and the verification set is applied to check the
network’s error performance. Finally, it is common practice to
reserve a third set of cases (test set) for external prediction, to
ensure that the results on the training and verification set are
real and no artifacts of the training process.

COMPUTATIONAL METHODS

Fifty pyrazine-based aroma compounds (Table 1), with earthy
or green flavor as well as with mixtures of both aroma qualities,
are selected from the literature (given in the table) in order to
find some molecular descriptors and to elucidate convenient
models for the predictive discrimination between these various
flavor impressions.

The three-dimensional structures of the pyrazines are built
using the Hyperchem 5.0 program package (25). They are
minimized with the MM+ force field implemented in this
software. The obtained geometries are then optimized in the
Gaussian 98 program on the basis of the ab initio Hartree-

Fock method at the 3-21G level (26). Afterward, the structures
are superimposed in such a manner that R1 is always defined
as the substituent possessing a heteroatom. For compounds
without a heteroatom, the methyl group is considered to be
located at position R1. In the case of the other parts of the
pyrazines, showing neither a heteroatom nor a methyl group,
the longest side chain is decided to be placed at position R2.
With the TSAR 3.21 (Tools for Structure-Activity Relation-
ships) software different properties for all structures are
calculated, among them steric descriptors (e.g., molecular mass,
molecular surface, molecular volume, and Verloop parameters),
molecular refractivity as a measure of polarizability, atom counts
(carbon atoms for each substituent and different heteroatoms
for substituent R1), and the sum of electrotopological indices,
which gives information about the electronic and topological
state of the atoms in the molecule (27). Furthermore, the
Hartree-Fock-derived dipole moments and point charges on
the atoms of the heterocycle and the first atoms of the four
substituents R1-R4 are used as electrostatic descriptors.

SOMFA calculations are performed using seven different
subsets of the pyrazines as data set. The encoding schemes for
the various calculations are depicted inTable 2.

The first investigation includes all 50 pyrazines and aims at
a classification of all structures into the three studied aroma
impressions. The activity is, therefore, encoded as 0.0 for earthy-
smelling described structures, 1.0 for green flavor, and 0.5 for
the mixture of those aroma qualities. As SOMFA distinguishes
between active and less active molecules, a value of 0.5 for
green-earthy means that this flavor could be described as half-
active for earthy and green aroma qualities. For most cases this
is not exactly true, as a mixed aroma impression on the one
hand can result from dominant aroma impressions with weaker
tonalities or, on the other hand, may represent a real mixture of
aroma qualities of equal intensity. To verify if an application
of SOMFA on smaller subsets of the data set allows additional
information to be gained, six more models are calculated. Each
of these models includes only two different aroma classes,
whereby in all cases one of the aroma impressions is set to an
activity value of 1.0 (“active”) and the other aroma quality to
0.0 (“not active”). For all of the studies, shape and electrostatic
potential based SOMFA models are calculated. To sum up the
predictive power of these two properties into one final model,
we combine their individual predictions using a mixing coef-
ficient (c1) as illustrated in eq 1 (15).

The quality of the resulting models is proven by calculation of
the correlation coefficient (r), the standard deviation (s), and
theF value (F). Moreover, the predictive power of the models
is checked by comparing the forecasted aroma impressions with
the aroma descriptions from literature.

Table 2. Encoding Scheme for the Data Sets Used for the SOMFA
Investigations

model earthy
green-
earthy green test compounds

1 0.0 0.5 1.0 2, 8, 13, 19, 22, 24, 31, 35, 43, 49
2 1.0 Xa 0.0 2, 5, 8, 10, 13, 35, 41, 43, 46, 49
3 0.0 X 1.0 2, 5, 8, 10, 13, 35, 41, 43, 46, 49
4 1.0 0.0 X 2, 5, 8, 10, 13, 19, 22, 24, 25, 31
5 X 0.0 1.0 19, 22, 24, 25, 31, 35, 41, 43, 46, 49
6 1.0 1.0 0.0 2, 8, 13, 19, 22, 24, 31, 35, 43, 49
7 0.0 1.0 1.0 2, 8, 13, 19, 22, 24, 31, 35, 43, 49

a X ) not included in this calculation.

activity ) c1(activityshape) + (1 - c1)(activityESP) (1)
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ANN analyses are performed with the TRAJAN software
package (28). Two different types to encode the target values
are used. A multilayer perceptron (MLP) network architecture
is trained on a nominal output variable. In this case, the network
has to learn to distinguish among the three aroma classes,
whereby a structure can have only one of these defined
impressions. On the other hand, a general regression neural
network (GRNN) is trained on a numerically defined output,
where one of the two aroma impressions is set to 1.0 (“present”)
and the other one is set to 0.0 (“absent”). In the case of the
mixed aroma impression green-earthy, the output values for
green as well as for earthy are set to 1.0. The trained GRNN
has to decide for every molecule if it shows (1) an earthy aroma
impression and (2) a green aroma quality. As the output values
of the GRNN can be interpreted as probabilities of showing a
distinct aroma impression, this type of network also allows a
quantitative interpretation of the observed results. For both
network types, statistics such as the percentage of correctly
predicted cases or correlation coefficients are calculated. The
predictive quality of the ANN is evaluated by comparison of
the known aroma impression from the literature with the
predicted ones received from ANN.

RESULTS

SOMFA Studies. SOMFA calculations for both shape and
electrostatic potentials are performed and combined according
to eq 1. Results and statistics for the various models are summed
in Table 3. Generally, it turns out that the steric contribution is
of higher importance (c1 > 0.5). To get some idea about the
external predictive ability of the different SOMFA models, each
of the studied subsets is divided into a training and a test set by
excluding 10 pyrazines as test compounds. The compounds of
the test sets are given inTable 2. The number of misclassified
cases within the different SOMFA models is depicted inTable
4.

The best statistics for the discrimination of the whole data
set into the three aroma impressions show a correlation
coefficient, r, of 0.734, a standard deviation,s, of 0.161, and
an overallF value of 44.51. By convention we decide that
activity predictions up to a value of 0.4 belong to the earthy
aroma impression, activities between 0.4 and 0.6 characterize
a mixed aroma impression, and values>0.6 are typical for
green-smelling pyrazines. Using this decision rule, the activity
predictions obtained from the model are compared to the aroma
descriptions from the literature. As can be seen fromTable 4
the misclassification within model 1 is rather high, as 16 of 50
pyrazines are not correctly predicted. To get some idea if the
used type of output encoding (0.0-0.5-1.0) is perhaps not
useful for SOMFA, the data set is divided into smaller subsets,
which are then investigated by the same procedure. The
difference to model 1 is that the remaining models include only
two aroma impressions each and that SOMFA therefore should

distinguish between active and not active. The limit between
the two classes is set to 0.5, meaning that activity predictions
<0.5 are decided to be not active, whereas values>0.5 stand
for active. SOMFA calculations 2 and 3 include the earthy and
the green-smelling described pyrazines. Both models show a
correlation coefficientr of 0.882 and a standard deviations of
0.197. Investigations 4 and 5 gain some differentiation between
earthy and green-earthy as well as between green and green-
earthy, respectively. As can be seen fromTables 3and4, model
4 results in 100% correct classification combined with rather
good statistical values (r) 0.887,s ) 0.180,F ) 77.53). On
the other hand, the distinction between green and green-earthy-
smelling pyrazines (model 5) is rather poor. Six of the studied
pyrazines are not correctly forecasted by this investigation. A
rather low correlation coefficientr of 0.658 combined with a
high misclassification rate is obtained by model 6, within which
the earthy and green-earthy groups are regarded as active,
whereas green is described as not active. Finally, combination
of the green and green-earthy classes into one aroma impression
and comparison to the earthy one (model 7) results in a
correlation coefficientr of 0.831 and a standard deviations of
0.176. The misclassification rate of this model is low, as only
one of the structures is not correctly predicted.

ANNs. Nominal classification is performed by comparison
of the three output neuron activation levels to two threshold
values, namely, the accept and the reject thresholds. Values
above the accept threshold are classified as positive (case
belongs to the class represented by this output neuron), whereas
activations below the reject threshold are classified as negative
(case does not belong to the class represented by the output
neuron). If the activation value lies between the accept and reject
thresholds, the case is not classified. As for our studies the accept
threshold is set to 0.0 and the reject threshold to 1.0; unclassified
cases do not appear. The 50 structures are split randomly into
three sets: 30 pyrazines are used for training, 10 compounds
(compounds6, 8, 9, 15, 27, 30, 39, 42, 44, and 50) for
verification, and 10 structures (compounds12, 13, 24, 25, 33,
36, 38, 40, 43, 48) for testing the neural network. The best
classification of the 50 pyrazines (94%) into the three different
groups of aroma impressions is obtained by back-propagation
training of a multilayer perceptron network (MLP) architecture
with seven input neurons, one hidden layer containing two
neurons, and the three defined output neurons, one for each
aroma impression. The MLP is composed by interconnecting
these neurons, whereby a weight is associated with each
connection. These weights are randomly initialized and itera-
tively optimized during the learning phase by back-propagating
the error function from the outputs to the inputs (29).

The seven input neurons of the trained neural network contain
the values of the following descriptors: charge of the first atom
of the substitutent R1, sum of electrotopological indices, number
of heteroatoms at substituent R1, dipole moment of the whole
structure, number of carbon atoms at substituent R2, molecular
surface of the substituent R1, and finally the charge of the carbon
atom C4 within the heteroaromatic ring. These seven inputs are
obtained by sensitivity analysis on the various descriptors. The
sensitivity analysis gives information about the relative impor-
tance of the variables. Therefore, the data set is submitted to
the network repeatedly, with each variable in turn treated as
missing, and the resulting network error is recorded. Removal
of an important variable results in a significant increase of the
network error. For the determination of the number of neurons
in the hidden layer, the empirical rule mentioned by So and
Richards is taken into account (30). Therefore, the ratio of the

Table 3. Statistics of the Various SOMFA Modelsa

model r a s F c1

1 0.734 0.161 44.51 0.7
2 0.882 0.197 66.90 0.8
3 0.882 0.197 66.90 0.8
4 0.887 0.180 77.53 0.6
5 0.732 0.214 27.72 0.5
6 0.658 0.180 28.98 0.6
7 0.831 0.176 84.50 0.7

a r ) correlation coefficient; s ) standard deviation; F ) F value; c1 ) steric
contribution.
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number of input samples to the number of adjustable weights
should result in a value forF in the range of 1.8< F < 2.2. If
F < 1.0, the network simply memorizes the data, whereas for
F > 3.0 the network is not able to generalize. Using an MLP
architecture with seven input neurons, two hidden neurons, and
three output neurons on our data set (30 training and 10
verification compounds), a value of 2.0 is obtained forF.
Training of this network results in a test error of 0.166, a
verification error showing a value of 0.187, and a test error of
0.258, whereby the errors are defined as the sum of the squared
differences between the predicted and actual output on each
output unit. As there are only 3 (compounds15,48, and49) of
50 pyrazines misclassified (Table 5), the performance of the
network is rather high (94%). With regard to the “wrong”
prediction of compound15, it should be mentioned that this
compound is described as earthy by Wagner et al. (6). and as
green-earthy by Boelens et al. (21). The ANN prediction model
determines an earthy odor impression for this compound
according to the information given by the second author.

Numerical classification is performed by calculation of
correlation coefficients between the descriptors used as input
for the neural network and the desired output values. For each
compound two decisions have to be made: (1) Does this
compound show an earthy odor? (2) Does the molecule possess
a green odor? The best result is obtained by training of a GRNN.
This network type achieves the estimation of the probability
density function for each unknown pattern and predicts the most
probable value of the dependent feature based on a finite number
of measurements (31). The data set of 50 pyrazines is divided
into 40 training and 10 test compounds (compounds1, 7, 13,
22,24,25,31,36,40, and44); no verification set is needed for
a GRNN. The GRNN used for this study is trained with the
following four inputs, which are observed from sensitivity
analysis: the number of heteroatoms at substituent R1, the charge
of the first atom of the substituent R4, the shape flexibility of
the whole molecule, and the number of carbon atoms at
substituent R3. As is usual for GRNNs, the first hidden layer
contains one neuron for each training case (pattern layer).
Furthermore, the network consists of three neurons in the second
hidden layer (summation layer) and two output neurons, one
for green and one for earthy aroma impression. By running the
data set, we observe a final model with correlation coefficients
for the earthy odor of 0.795 (training set) and 0.741 (test set),
whereas correlations between the inputs and the green aroma

impression are 0.946 and 0.973, respectively. The training as
well as the test error of this model both show a value of 0.226.
If we drag a limit between the “presence” and “absence” of an
aroma impression at a value of 0.5 (no impression< 0.5 >
impression), only a small misclassification rate can be observed.
Six of the 100 decisions performed by GRNN are not correct
(one quality character for each of the following structures:
compounds14, 19, 44, 46, 48, and49). This results in a quite
impressive correct classification rate of 94%. The prediction of
the aroma impression of the test set is depicted inTable 6.

DISCUSSION

Comparison of the results obtained by the different encoding
types for the aroma impression and the two different calculation
methods shows that for the given classification problem models
of different predictive power are obtained. In general, statistics
and classification performance of the SOMFA models are not
as good as the ones obtained from ANN. SOMFA model 1 and
the ANN model with nominal output consider the same problem.
Both aim at a classification of the studied structures into the
three aroma impressions earthy, green-earthy, and green. As
can be seen from the results, the ANN works definitely better
on this problem than SOMFA. This is an indication for nonlinear
relationships within the given classification problem. Moreover,
the ANN with numerically encoded output performs well on
the aroma differentiation. This application additionally provides
some quantitative information about the relative part of the
aroma qualities green and earthy to the mixed impression.
Application of SOMFA on smaller subsets allows more insight

Table 4. Number of Misclassified Cases (Code As Given in Table 1 in Parentheses) within the Various SOMFA Modelsa

training test

model earthy green-earthy green earthy green-earthy green

1 1 (1) 6 (16, 17, 21, 26, 29, 33) 6 (41, 42, 44, 46, 47, 50) 1 (13) 2 (22, 24) 0
2 0 Xa 0 0 X 1 (46)
3 0 X 0 0 X 1 (46)
4 0 0 X 0 0 X
5 X 1 (17) 2 (47, 48) X 0 3 (41, 46, 49)
6 0 1 (17) 5 (41, 44, 46, 47, 48) 0 0 1 (49)
7 0 0 1 (46) 0 0 0

a X ) not included in this calculation.

Table 5. Classification Statistics of ANN with Nominal Output

training verification test

earthy green-earthy green earthy green-earthy green earthy green-earthy green

total 9 13 8 3 3 4 2 3 5
correct 9 13 7 3 2 4 2 3 4
wrong 0 0 1 0 1 0 0 0 1

Table 6. Prediction of the Aroma Impression of the Test Set by GRNN

earthy green

compd actual pred actual pred

1 1 0.943 0 0.286
7 1 1 0 0

13 1 0.966 0 0.107
22 1 0.776 1 1
24 1 0.772 1 1
25 1 0.705 1 1
31 1 0.976 1 1
36 0 0.002 1 1
40 0 0.003 1 1
44 0 0.870 1 0.782
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into the appropriation of this and other two-dimensional methods
on a classification problem. As for SOMFA models 2 and 3,
totally equal statistical parameters are obtained, so it can be
concluded that the final result of a model is not influenced by
the decision of which one of the two studied aroma qualities is
defined as active and which one as not active. Closer inspection
of the remaining results of the SOMFA applications indicates
that misclassification occurs especially within the green aroma
quality. This seems to be due to the relatively high electrostatic
similarity between the pyrazines assigned to the green and the
green-earthy aroma impression, assin contrast to the earthy-
smelling structuressthese two groups mostly contain a hetero-
atom at position R1. If structurally similar compounds are
described by strongly varying activities and are, therefore,
assigned to different aroma impressions, a clear distinction
between them is not possible by means of SOMFA.

Comparison of the correlation coefficients and classification
performances of the different models points out that in general
ANNs work better on the given classification problem. However,
it has to be considered that the two different methods use
different calculation procedures and variables to obtain their
final models. In the case of SOMFA the three-dimensional
structures and the electrostatic potentials of the studied mol-
ecules are used as input. On the other hand, ANNs build their
decision on various two-dimensional descriptors and the Har-
tree-Fock-derived point charges. It is evident that the nonlinear
handling of the data set leads to better results than the linear
calculation procedure. A further advantage of ANNs is that their
results allow more detailed insight into the structural differences
between the studied aroma qualities. One important electrostatic
descriptor used for the ANNs presented here is the charge of
the first atom of the substituent R1. This feature displays a
characteristic difference between the studied aroma impressions.
Substituent R1 of the earthy-smelling pyrazines is usually a
methyl group, whereas structures belonging to the green class
mostly show a substituent R1 containing a heteroatom. As a
consequence, molecules of the green and earthy aroma qualities
have different charges at this position. Moreover, the molecular
surface of the substituent R1 varies within these two groups.
Additional information about the differences between green and
earthy aroma qualities of pyrazines can be obtained from the
charge of the carbon atom C4 within the ring. This charge
depends on the substituent R4. If this substituent represents a
short carbon side chain, the substances have a strong tendency
to show an earthy aroma impression, whereas the green-smelling
structures mostly contain a hydrogen atom at this position.
Furthermore, the number of carbon atoms at substituent R3

influences the differentiation between earthy and green aroma
impressions. Generally, green-smelling pyrazines show a long
side chain at this position, whereas a small substituent indicates
an earthy impression. The mixed aroma impression seems to
be a result of a combination of the described characteristics of
the green and earthy aroma qualities, as green-earthy-smelling
pyrazines usually contain a heteroatom at substituent R1 (green),
a hydrogen atom at position R4 (green), and a small substituent
at R3 (earthy).
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